
CSCI5550 Advanced File and Storage Systems

Lecture 05:

Distributed File Systems

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 2

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Client-Server Model (1/2)

• Generic Client-Server Model:

– One (or a few) server stores the data on its disks;

– Multiple clients request data through protocol messages.

CSCI5550 Lec05: Distributed File Systems 3

Easy sharing

of data across

multi-clients

Centralized

administration

for data backup

and security

Client Server

Client-Server Model (2/2)

• Client

– Issues system calls to the

client-side file system to

access files on the server.

– Caches retrieved blocks in

memory for future use.

• Server

– Accesses data blocks in

the server-side file

system (i.e., file server).

– Caches and buffers

reads/writes in memory.

CSCI5550 Lec05: Distributed File Systems 4

File accesses

are transparent

to the client!

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 5

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Network File System (NFS)

• Sun Network File System (NFS)

– Developed by Sun Microsystems in 1980’s.

– An open protocol that specifies the exact message

formats for client-server communication.

• Rather than a proprietary and closed system.

– It worked: Many big companies sell NFS servers, including

Oracle/Sun, NetApp, EMC, IBM, etc.

• Current Standard: NFSv4 supports larger-scale protocol.

• We focus on the NFS protocol version 2 (NFSv2):

– Goals of NFSv2: simplicity and fast crash recovery

• Crashes are common in distributed systems, due to power outages,

software bugs, network disconnections, etc.

CSCI5550 Lec05: Distributed File Systems 6

• NFS is stateless: The file server doesn’t keep track

of anything about the actions of clients.

– Each client includes all information in the protocol request;

– The server processes and then “forgets” the request.

• CounterEx: Shared state complicates crash recovery.

– The client-side file system opens the file.

– The file server opens the file and returns the descriptor (fd).

– The client-side file system uses fd for subsequent reads.

CSCI5550 Lec05: Distributed File Systems 7

char buffer[MAX];
int fd = open("foo", O_RDONLY); // get descriptor from server
read(fd, buffer, N); // read N bytes from foo via fd
...
close(fd); // close file

Fast Crash Recovery: Statelessness (1/2)

• Server Crashes

– Imagine the server crashes between two consecutive reads.

– After the server is up again, the client re-issues the read.

– The server has no idea to which file fd is referring.

• fd was keeping in server memory and lost when server crashed.

• Client Crashes

– Imagine a client opens a file and then crashes.

• The open() uses up a file descriptor on the server.

– However, the server never receives a close().

• For above reasons, NFS adopts a stateless design.

– No fancy crash recovery is needed:

• The server just starts running again;

• A client, at worst, might have to retry a request.

CSCI5550 Lec05: Distributed File Systems 8

Fast Crash Recovery: Statelessness (2/2)

NFSv2: A Stateless File Protocol (1/2)

Key to NFSv2 Protocol: The File Handle

• A file handle uniquely identifies a file or a directory

with three components:

 Volume Identifier: specifies a file system;

 Inode Number: specifies a file/directory in a file system;

 Generation Number: is needed when reusing an inode.

• By incrementing it whenever an inode number is reused.

• The server ensures that a client with an old file handle cannot

accidentally access the newly-allocated file.

• A file handle is encoded into some forms of strings.
CSCI5550 Lec05: Distributed File Systems 9

NFSv2: A Stateless File Protocol (2/2)

• NFSPROC_LOOKUP

– Obtain a file handle for a file or directory from the file server.

• NFSPROC_READ

– Pass the file handle, offset, and the number of bytes to read;

– Obtain the retrieved data.

• NFSPROC_WRITE

– Pass the file handle, offset, the number of bytes, along with

the data to write.

• NFSPROC_GETATTR/NFSPROC_SETATTR

– Get/Set metadata (e.g., last modified time) with a file handle.

• Others: NFSPROC_CREATE, NFSPROC_REMOVE,

NFSPROC_MKDIR, NFSPROC_RMDIR, NFSPROC_READDIR

CSCI5550 Lec05: Distributed File Systems 10

Protocol Messages

• The client-side file system tracks open files, and

translates file system calls into protocol messages.

• The server responds to protocol messages, which

contains all information needed to complete a request.

• Example: Reading a File

CSCI5550 Lec05: Distributed File Systems 11

Client Protocol Messages

fd = open(“/foo”, …); NFSPROC_LOOKUP(rootdir FH, “foo”)

read(fd, buffer, N); NFSPROC_READ(FH, offset=0, cnt=N)

read(fd, buffer, N); NFSPROC_READ(FH, offset=N, cnt=N)

read(fd, buffer, N); NFSPROC_READ(FH, offset=2*N, cnt=N)

close(fd); (do nothing)

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 12

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

• Three types of protocol message losses:

CSCI5550 Lec05: Distributed File Systems 13

Handling Server Failures (1/3)

Case 3

Reply Lost

Do It

Again!

Handling Server Failures (2/3)

• In NFSv2, a client detects the response timeout and

simply retries the request.

• Reason: Most NFS requests are idempotent.

– The effect of performing the request multiple times is

equivalent to that of performing the request a single time.

– E.g., LOOKUP, READ, and WRITE requests are idempotent.

CSCI5550 Lec05: Distributed File Systems 14

Case 1

Request Lost
Retry!

Case 2

Server Down
Retry!

Handling Server Failures (3/3)

• Some requests are hard to make idempotent.

– For example, if the file server receives a MKDIR protocol

message and executes it successfully;

– But the reply is lost and the client may retry it (as Case 3).

– The server must fail the retry (rather than re-do it).

• Why? The effect of creating a directory twice is not equivalent to the

effect of creating a directory once (i.e., not idempotent).

CSCI5550 Lec05: Distributed File Systems 15

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 16

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Client-side Caching / Buffering

• Sending all read and write requests across the

network can lead to a big performance problem.

• Intuitive Solution: Client-side Caching / Buffering

• The NFS client caches file data and metadata read

from server in its local memory.

– The first access is still expensive (via network

communication);

– Subsequent accesses are serviced quite quickly in memory.

• The NFS client buffers data in its local memory

before writing them out to server.

– The write() system call succeeds immediately.

CSCI5550 Lec05: Distributed File Systems 17

Cache Consistency Problem (1/2)

• Consider a NFS with three clients and one server:

– Client C1 reads a file F[v1], and keeps a copy in its cache.

– Client C2 overwrites file F, but buffers F[v2] in its cache.

– Client C3 has not yet accessed the file F.

• Cache Consistency/Coherence Problems:

 Stale Cache (from read perspective)

• The cache still holds not-yet-updated data.

 Update Visibility (from write perspective)

• Updates are buffered in memory and not seen by others.

CSCI5550 Lec05: Distributed File Systems 18

Cache Consistency Problem (2/2)

 Stale Cache: C1 has the stale F[v1] in its cache.

– Solution: NFS clients first check whether a file has

changed before using its cached contents.

– How? Issuing a GETATTR request to server to know when

the file was last modified (but raise flooding of GETATTR).

 Update Visibility: The update from C2 is not visible

to C3: C3 only gets old copy F[v1] from the server.

– Solution: NFS clients (C2) implement flush-on-close to

ensure that a subsequent open will get the latest version.

CSCI5550 Lec05: Distributed File Systems 19

Stale

Cache

Update

Visibility

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 20

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Server-side Caching / Buffering

• The file server can also cache read/write requests.

• Write buffering needs to be carefully implemented:

– The server must commit each write before informing the

client of success.

• To avoid write becoming the performance bottleneck:

– The server may use battery-backed memory or the log-

structured approach to improve write performance.

CSCI5550 Lec05: Distributed File Systems 21

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 22

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Google File System (GFS)

• GFS is a scalable distributed file system for large

distributed data-intensive applications.

• GFS is driven by Google’s specific application

workloads and technological environment.

• As of 2003, multiple GFS clusters are deployed:

– Over 1000 storage nodes;

– Over 300TB disk storage;

– Heavily accessed by hundreds of clients.

CSCI5550 Lec05: Distributed File Systems 23

Considerations and Assumptions

 Component failures are the norm, not the exception.

– The system is of inexpensive components that often fail.

 Files are huge: Multi-GB files are common.

 Appending new data is much more common than

overwriting existing data.

– Random writes are uncommon; instead, clients may

concurrently append large, sequential writes to files.

– GFS fulfils record append and snapshot operations.

 The read workloads consist of large streaming reads

and small random reads.

 It is more critical to sustain high bandwidth rather

than low latency.

CSCI5550 Lec05: Distributed File Systems 24

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 25

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Overview: GFS Architecture

• A GFS cluster consists  a single master,  multiple

chunkservers, and is accessed by  multiple clients.

– Each of these is typically a commodity Linux machine

running a user-level server process.

CSCI5550 Lec05: Distributed File Systems 26

Single Master (1/2)

• A GFS cluster consists  a single master,  multiple

chunkservers, and is accessed by  multiple clients.

– Each of these is typically a commodity Linux machine

running a user-level server process.

CSCI5550 Lec05: Distributed File Systems 27

heart

beats

Single Master (2/2)

• Maintain all file system metadata:

– Including namespace, access control information, the

mapping from files to chunks, and the locations of chunks.

• Control system-wide activities:

– Chunk replica placement

– Chunk release management

– Chunk migration between chunkservers (i.e., rebalancing)

– Garbage collection of orphaned chunks

• Communicate periodically with each chunkserver in

heartbeats to give it instructions and collect its state.

CSCI5550 Lec05: Distributed File Systems 28

Multiple Chunkservers (1/2)

• A GFS cluster consists  a single master,  multiple

chunkservers, and is accessed by  multiple clients.

– Each of these is typically a commodity Linux machine

running a user-level server process.

CSCI5550 Lec05: Distributed File Systems 29

heart

beats

Multiple Chunkservers (2/2)

• Files are divided into fixed-size chunks, which can be

identified by a unique chunk handle (like FH in NFS).

– Chunks are stored on local disks of chunkservers as files.

– Chunks are accessed by the chunk handle and byte range.

– The chunk size (chosen 64 MB) is much larger than typical

file system block sizes (e.g., 4 KB).

• Reduce clients’ need to interact with the master;

• Reduce the size of metadata stored on the master;

• Reduce the network overhead for consecutive workloads (e.g.,

search) by keeping a stable TCP connection.

– Chunks are replicated across chunkservers (by default,

three copies) for reliability concerns.

• Chunkservers need not cache file data.

– Linux’s buffer cache keeps frequently-accessed data.
CSCI5550 Lec05: Distributed File Systems 30

Multiple Clients (1/2)

• A GFS cluster consists  a single master,  multiple

chunkservers, and is accessed by  multiple clients.

– Each of these is typically a commodity Linux machine

running a user-level server process.

CSCI5550 Lec05: Distributed File Systems 31

heart

beats

Multiple Clients (2/2)

• GFS client code, linked into the upper application,

offers the file system API to communicate with master

and chunkservers.

• Interact with the master for metadata operations

– Clients can cache metadata to reduce the need to interact

with the master.

• Interact with chunkservers for direct data-bearing

communications

– Clients cache no file data in its local memory.

• Avoidance of cache coherence/consistency issues (existed in NFS!)

• Limited benefits with streaming of large files and large working sets

CSCI5550 Lec05: Distributed File Systems 32

File System Metadata

• The master maintains three types of FS metadata:

 The file and chunk namespaces (i.e., directory hierarchy) ;

 The mapping from files to chunks,

 The locations of each chunk’s replicas.

• The master keeps all three types of metadata in its

memory for fast access.

– Less than 64 bytes of metadata for each 64 MB chunk.

– Less than 64 bytes per file if prefix compression is used.

• The master persists  namespaces and  file-to-

chunk mapping in its local disks as an operation log.

– But the master does not persist the chunk locations.

• It can be pulled from chunkservers at startup via heartbeats.

CSCI5550 Lec05: Distributed File Systems 33

Working Example: Client Reads

 C translates (file name and offset) into a chunk
index, and sends a request to M

 M replies C the chunk handle and chunk locations

 C requests for chunk directly from the “closest” CS

CSCI5550 Lec05: Distributed File Systems 34







The “closest” CS

can be determined

by IP address heart

beats

Working Example: Client Writes (1/2)

• A write must perform at all the chunk’s replicas.

• A mutation is an operation that changes the contents

or metadata of a single chunk over all replicas.

– If a write exceeds the chunk boundary, the client must

break it down into multiple mutation operations.

• The master uses leases to maintain a consistent

mutation order across replicas.

– The master grants a lease to one of replicas called primary.

• The lease is designed to minimize management overhead at master.

• A lease has an initial timeout of 60 seconds.

• A lease can be renewed through heartbeats; the master can also

revoke a lease before it expires.

– The primary picks a serial order for all mutations on other

replicas called secondary.
CSCI5550 Lec05: Distributed File Systems 35

Working Example: Client Writes (2/2)

 C asks master for the CSs

holding the primary and

secondary replicas.

 M replies C.

 C pushes the data to all the

replicas in any order.

 Once all acknowledged, C

sends a write to the primary.

 The primary forwards the

write to all secondary(s).

 The secondary(s) all reply

to primary upon completed.

 The primary replies to C.

• If some fail, retry ~ or all.

CSCI5550 Lec05: Distributed File Systems 36

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 37

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Record Appends

• Workload Observation: Clients may concurrently

append large, sequential writes to files.

– Concurrent writes to the same region are not serializable.

• GFS offers an atomic operation called record append.

 C pushes data to all replicas of the last chunk of the file.

 C sends the record append request to the primary.

 If record fits within a chunk, the primary appends data to its

replica and asks secondary(s) to write at the exact offset;

otherwise, the primary pads the chunk to the maximum

size, and asks C to retry the operation on the “next” chunk.

 If a record append fails at any replica, C must retry but may

result in inconsistency: The GFS application must cope with it.

Note: The record append is restricted to be at most one-fourth (i.e.,

16 MB) of the maximum chunk size (64 MB).
CSCI5550 Lec05: Distributed File Systems 38

Outline

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 39

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Relaxed Consistency (1/4)

• GFS guarantees a “relaxed consistency” model.

– File namespace operations are atomic: They are handled

by the master exclusively.

– The states of a file region depend on  the operation type

(i.e., write or record append),  whether the operation

succeeds or fails, and  whether there’re concurrent ones.

• “Relaxed” Consistent: all clients see the same data in all replicas

• Defined:  a region is consistent after an operation, and  clients

see what the mutation has written in entirety

CSCI5550 Lec05: Distributed File Systems 40

Write Record Append

Serial Success defined defined interspersed

with

inconsistentConcurrent Successes consistent but undefined

Failure inconsistent

Relaxed Consistency (2/4)

• Consistent: all clients see the same data in all replicas

• Defined:  a region is consistent after an operation, and

 clients see what the mutation has written in entirety

CSCI5550 Lec05: Distributed File Systems 41

Chunk 1

9: Hello

10: World

Chunk 1’

9: Hello

10: World

write(“Hello”, 9)

write(“World”, 10)

Case: Write – Serial Success

defined

Write Record Append

Serial Success defined defined interspersed

with

inconsistentConcurrent Successes consistent but undefined

Failure inconsistent

Chunk 1

9: Hello

10: World

Chunk 1’

9: Hello

write(“Hello”, 9)

write(“World”, 10)

Case: Write – Failure

inconsistent

Relaxed Consistency (3/4)

• Consistent: all clients see the same data in all replicas

• Defined:  a region is consistent after an operation, and

 clients see what the mutation has written in entirety

CSCI5550 Lec05: Distributed File Systems 42

Write Record Append

Serial Success defined defined interspersed

with

inconsistentConcurrent Successes consistent but undefined

Failure inconsistent

Chunk 1

9: Hello

10: Wor5550

Chunk 1’

9: Hello

10: Wor5550

write(“World”, 10:0)

Case: Write – Concurrent Successes

consistent but undefined

write(“5550”, 10:3)

Chunk 1

9: Hello

10: World

11: World

Chunk 1’

9: Hello

11: World

Case: Record Append

defined but inconsistent

write(“World”, 10:0)

retry

Relaxed Consistency (4/4)

• Concurrent writes may result in consistent but

undefined:

– All clients see the same data, but it may not reflect what any

mutation has written.

– The order is not guaranteed; a region may contain

fragments from multiple clients.

• Record append ensures a record is appended

atomically at least once, but at an offset chosen by

the primary.

– Applications need to deal with possible duplicates.

CSCI5550 Lec05: Distributed File Systems 43

GFS Limitations

 Single master simplifies the coordination, but it may

become the single point of failure.

– Ceph: A Scalable, High-Performance Distributed File

System (OSDI’06)

 Relaxed consistency burdens the GFS applications.
CSCI5550 Lec05: Distributed File Systems 44

Other Distributed File Systems

• Ceph: A Scalable, High-Performance Distributed File

System (OSDI’06)

• Hadoop Distributed File System (by Yahoo!)

• GlusterFS

CSCI5550 Lec05: Distributed File Systems 45

https://en.wikipedia.org/wiki/List_of_file_systems#Distrib
https://en.wikipedia.org/wiki/List_of_file_systems#Distrib

Summary

• Network File System (NFS)

– Client-Server Model

– NFSv2: A Stateless File Protocol

– Handling Server Failures

– Client-side Caching / Buffering

– Server-side Caching / Buffering

• The Google File System (GFS)

– Design Considerations and Assumptions

– GFS Architecture

– Record Appends

– Relaxed Consistency

CSCI5550 Lec05: Distributed File Systems 46

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

